Advances in biochemical engineering/biotechnology

Metabolic engineering of indene bioconversion in Rhodococcus sp.

PMID 11816813


We have applied the methodology of metabolic engineering in the investigation of the enzymatic bioreaction network in Rhodococcus sp. that catalyzes the bioconversion of indene to (2R)-indandiol suitable for the synthesis of cis-1-amino-2-indanol, a precursor of the HIV protease inhibitor, Crixivan. A chemostat with a novel indene air delivery system was developed to facilitate the study of steady state physiology of Rhodococcus sp. 124. Prolonged cultivation of this organism in a continuous flow system led to the evolution of a mutant strain, designated KY1, with improved bioconversion properties, in particular a twofold increase in yield of (2R)-indandiol relative to 124. Induction studies with both strains indicated that KY1 lacked a toluene-inducible dioxygenase activity present in 124 and responsible for the formation of undesired byproducts. Flux analysis of indene bioconversion in KY1 performed using steady state metabolite balancing and labeling with [14C]-tracers revealed that at least 94% of the indene is oxidized by a monooxygenase to indan oxide that is subsequently hydrolyzed to trans-(1R,2R)-indandiol and cis-(1S,2R)-indandiol. This analysis identified several targets in KY1 for increasing (2R)-indandiol product yield. Most promising among them is the selective hydrolysis of indan oxide to trans-(1R,2R)-indandiol through expression of an epoxide hydrolase or modification of culture conditions.