Hypertension (Dallas, Tex. : 1979)

Phorbol diacetate potentiates na(+)-k(+) ATPase inhibition by a putative endogenous ligand, marinobufagenin.

PMID 11847201


Several vasoconstrictor agents can regulate the phosphorylation status of the Na(+)-K(+) ATPase (NKA). We have recently demonstrated that mammalian tissues contain an endogenous bufadienolide, digitalis-like alpha(1)-NKA-selective ligand, marinobufagenin (MBG). Protein kinase C induces phosphorylation of the alpha(1)-NKA isoform, the major isoform in vascular smooth muscle, kidney, and heart cells. We hypothesized that protein kinase C-induced phosphorylation of NKA can potentiate the effect of endogenous digitalis-like ligands, and that such potentiation can occur in an NKA isoform-specific fashion. A protein kinase C activator, phorbol 12,13-diacetate (PDA, 50 nmol/L), induced phosphorylation of the alpha1-NKA from human mesenteric artery (HMA) sarcolemma and rat kidney but not that of the alpha(3)-NKA from rat fetal brain. In HMA sarcolemma, which predominantly contains alpha(1)-NKA, PDA (50 nmol/L) potentiated the NKA-inhibitory effect of MBG at the level of high-affinity binding sites (0.05 +/- 0.03 nmol/L versus 4.0 +/- 1.7 nmol/L, P<0.05). In contrast, PDA did not affect the NKA inhibition by ouabain, an alpha(3)-NKA ligand. In isolated endothelium-denuded HMA artery rings, 50 nmol/L PDA potentiated the MBG-induced vasoconstriction (EC(50), 17 +/- 6 nmol/L versus 150 +/- 40 nmol/L; P<0.01). Our results suggest that alpha(1)-isoform-specific NKA inhibition by the endogenous digitalis-like ligand, MBG, is substantially enhanced via NKA phosphorylation by protein kinase C. Thus, an interaction of protein kinase C-dependent phosphorylation and MBG on NKA activity may underlie the synergistic vasoactive effects of MBG and other endogenous vasoconstrictors in hypertension.

Related Materials

Product #



Molecular Formula

Add to Cart

Phorbol 12,13-diacetate, powder