Free radical biology & medicine

Increased proteolysis after single-dose exposure with hepatotoxins in HepG2 cells.

PMID 12106824


Chronic ethanol consumption is associated with increased protein oxidation and decreased proteolysis in the liver. We tested the hypothesis that even single-dose treatment with ethanol or bromotrichloromethane causes increased protein oxidation and a distinct proteolytic response in cultured hepatocytes. HepG2 cells were treated for 30 min with ethanol, H(2)O(2) and bromotrichloromethane at various nontoxic concentrations. Protein degradation was measured in living cells using [35S]-methionine labeling. Protein oxidation, and 20S proteasome activity were measured in cell lysates. Oxidized proteins increased immediately after ethanol, H(2)O(2), and bromotrichloromethane exposure, but a further significant increase 24-h after exposure was observed only following ethanol and bromotrichloromethane treatment. All three reagents caused a significant increase of the overall intracellular proteolysis at rather low concentrations, which could be suppressed by the proteasome inhibitor lactacystin. A decline of proteolysis observed at higher-subtoxic-concentrations was not related to decreased proteasome activity. Preincubation with ketoconazole or 4-methylpyrazole completely prevented the ethanol- and bromotrichloromethane-induced but not the H(2)O(2)-induced protein oxidation and proteolysis, suggesting strongly an enzyme-mediated generation of reactive oxygen species. In conclusion single-dose exposure with ethanol or haloalkanes causes increased protein oxidation followed by an increased proteasome-dependent protein degradation in human liver cells.

Related Materials

Product #



Molecular Formula

Add to Cart

Bromotrichloromethane, 99%