EMAIL THIS PAGE TO A FRIEND

American journal of physiology. Heart and circulatory physiology

Sole activation of three luminal adenosine receptor subtypes in different parts of coronary vasculature.


PMID 12388293

Abstract

In isolated guinea pig hearts saline perfused at constant flow, adenosine A(1), A(2A), and A(3) (A(x)) agonists covalently bound to a large polymer (Pol; 2,000 kDa) were intracoronarily administered, and three effects were studied: dromotropic, vascular and inotropic. The rank order of potencies were the following: dromotropic (Pol-A(2A)Pol-A(1)>Pol-A(3)) and vascular and inotropic (Pol-A(2A)> or =Pol-A(1)Pol-A(3)), where the rank order of potency for Pol-A(x) depends on the part of the coronary vascular network involved; i.e., there is a vascular heterogeneity. The large size of Pol-A(x) prevents extravascular diffusion and causes it to act solely in the endothelial luminal surface. This implies their cardiac effects are due to endothelial mediators. Inhibition of nitric oxide (NO) and prostaglandin (PG) synthesis with N(G)-nitro-l-arginine methyl ester and indomethacin, respectively, show that the three cardiac effects of Pol-A(1) were mediated by NO and PG, whereas for Pol-A(2A) and Pol-A(3) the mediator was mainly NO but not PG. These results suggest that if Pol-A(x) activated the corresponding endothelial A(x)-receptor subtype, a different mediator would be produced.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

A111
Adenosine amine congener hydrate, solid, ≥98% (HPLC)
C28H32N8O6 · xH2O