Journal of immunology (Baltimore, Md. : 1950)

Delineation of five thyroglobulin T cell epitopes with pathogenic potential in experimental autoimmune thyroiditis.

PMID 12391254


Experimental autoimmune thyroiditis (EAT) is a T cell-mediated disease that can be induced in mice after challenge with thyroglobulin (Tg) or Tg peptides. To date, five pathogenic Tg peptides have been identified, four of which are clustered toward the C-terminal end. Because susceptibility to EAT is under control of H-2A(k) genes, we have used an algorithm-based approach to identify A(k)-binding peptides with pathogenic potential within mouse Tg. Eight candidate synthetic peptides, varying in size from 9 to 15 aa, were tested and five of those (p306, p1579, p1826, p2102, and p2596) were found to induce EAT in CBA/J (H-2(k)) mice either after direct challenge with peptide in adjuvant or by adoptive transfer of peptide-sensitized lymph node cells (LNCs) into naive hosts. These pathogenic peptides were immunogenic at the T cell level, eliciting specific LNC proliferative responses and IL-2 and/or IFN-gamma secretion in recall assays in vitro, but contained nondominant epitopes. All immunogenic peptides were confirmed as A(k) binders because peptide-specific LNC proliferation was blocked by an A(k)-specific mAb, but not by a control mAb. Peptide-specific serum IgG was induced only by p2102 and p2596, but these Abs did not bind to intact mouse Tg. This study reaffirms the predictive value of A(k)-binding motifs in epitope mapping and doubles the number of known pathogenic T cell determinants in Tg that are now found scattered throughout the length of this large autoantigen. This knowledge may contribute toward our understanding of the pathogenesis of autoimmune thyroiditis.