EMAIL THIS PAGE TO A FRIEND

Neurochemistry international

Characterisation of an uridine-specific binding site in rat cerebrocortical homogenates.


PMID 12620278

Abstract

Parameters of [3H]uridine binding to synaptic membranes isolated from rat brain cortex (K(D)=71+/-4 nM, B(max)=1.37+/-0.13 pmol/mg protein) were obtained. Pyrimidine and purine analogues displayed different rank order of potency in displacement of specifically bound [3H]uridine (uridine>5-F-uridine>5-Br-uridine approximately adenosine>5-ethyl-uridine approximately suramin>theophylline) and in the inhibition of [14C]uridine uptake (adenosine>uridine>5-Br-uridine approximately 5-F-uridine approximately 5-ethyl-uridine) into purified cerebrocortical synaptosomes. Furthermore, the effective ligand concentration for the inhibition of [14C]uridine uptake was about two order of magnitude higher than that for the displacement of specifically bound [3H]uridine. Adenosine evoked the transmembrane Na(+) ion influx, whereas uridine the transmembrane Ca(2+) ion influx much more effectively. Also, uridine was shown to increase free intracellular Ca(2+) ion levels in hippocampal slices by measuring Calcium-Green fluorescence. Uridine analogues were found to be ineffective in displacing radioligands that were bound to various glutamate and adenosine-recognition and modulatory-binding sites, however, increased [35S]GTPgammaS binding to membranes isolated from the rat cerebral cortex. These findings provide evidence for a rather specific, G-protein-coupled site of excitatory action for uridine in the brain.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

850187
5-Bromouridine, 98%
C9H11BrN2O6