EMAIL THIS PAGE TO A FRIEND

Neuroscience research

Fulfenamic acid sensitive, Ca(2+)-dependent inward current induced by nicotinic acetylcholine receptors in dopamine neurons.


PMID 12871768

Abstract

Nicotinic acetylcholine receptors (nAChRs) exhibit high Ca(2+) permeabilities and the Ca(2+)-influx through the nAChRs may be involved in regulation of a variety of signal processing in the postsynaptic neurons. The mesencephalic dopamine (DA) neurons receive cholinergic inputs from the brainstem and express abundant nAChRs. Here we report that the Ca(2+)-influx induced by a transient pressure application of ACh activates an inward current mediated by nAChRs and subsequently an inward current component that is sensitive to fulfenamic acid (FFA) and phenytoin, presumably a Ca(2+)-activated nonselective cation current in the DA neurons in the midbrain slices of the rat. The FFA- and phenytoin-sensitive current exhibits a negative slope conductance below -40 mV, suggesting its role in significant enhancement of depolarizing responses. In the current clamp recordings with perforated patch clamp configuration, bath application of carbachol markedly enhanced the glutamate-induced depolarization, which led to a long-lasting depolarizing hump. Activation of nAChRs is involved in this process, in cooperation with muscarinic receptors that suppress afterhyperpolarization caused by Ca(2+)-activated K(+)-channels. The long-lasting depolarizing hump was suppressed by FFA. All these results suggested a potential role of the FFA-sensitive current triggered by nAChR activation in marked enhancement of the excitatory synaptic response in DA neurons.