EMAIL THIS PAGE TO A FRIEND

Biochimica et biophysica acta

Identification of a putative collagen-binding protein from chicken skeletal muscle as glycogen phosphorylase.


PMID 1324005

Abstract

We have purified and generated antisera to a 95 kDa skeletal muscle protein that constitutes the largest mass fraction of gelatin-agarose binding proteins in skeletal muscle. Preliminary results indicated that this 95 kDa chicken skeletal muscle protein bound strongly to gelatin-agarose and type IV collagen-agarose, suggesting a possible function in muscle cell adhesion to collagen. However, N-terminal sequencing of proteolytic fragments of the 95 kDa protein indicates that it is the chicken skeletal muscle form of glycogen phosphorylase, the binding of which to gelatin-agarose is unlikely to be biologically relevant. Further characterization showed that the skeletal muscle form of glycogen phosphorylase is immunologically distinct from the liver and brain forms in the chicken, and suggests that, unlike mammalian skeletal muscle, chicken skeletal muscle may have two phosphorylase isoforms. Furthermore, immunolocalization data and solubility characteristics of glycogen phosphorylase in muscle extraction experiments suggest the enzyme may interact strongly with an unidentified component of the muscle cytoskeleton. Thus, this study yields a novel purification technique for skeletal muscle glycogen phosphorylase, provides new information on the distribution and isoforms of glycogen phosphorylase, and provides a caveat for using gelatin affinity chromatography as a primary step in purifying collagen-binding proteins from skeletal muscle.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

G5384 Gelatin-Agarose, saline suspension