EMAIL THIS PAGE TO A FRIEND

Electrophoresis

High-speed chiral separations on a microchip with UV detection.


PMID 14518050

Abstract

Fast chiral separations of a variety of basic and acidic compounds could be realized on microfluidic quartz chips. A microchip electrophoresis instrument equipped with a linear imaging UV-detector was used. The usually applied but troublesome fluorescence tagging in order to enable fluorescence detection could be omitted. Using sulfated cyclodextrins as chiral selectors baseline separation of 19 compounds could be achieved in less than 1 min with high reproducibility. The relative standard deviation of migration time was below 7%. The fastest separation could be performed in 2.5 s which is to date the fastest separation of enantiomers reported. It was possible to apply microchip electrophoresis (MCE) for the determination of high enantiomeric excess (ee) values, as exemplarily shown for pseudoephedrin where 2% of the minor enantiomer could reliably be determined beside high amount of the other isomer. Successful separation of a mixture of 3 chiral drugs could be performed in a single run in less than 11 s utilizing a separation length of only 12 mm. These results show that MCE has great potential for fast chiral analysis and high-throughput screening.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

T0202
Tocainide hydrochloride, ≥98% (HPLC), solid
C11H16N2O · HCl