Applied and environmental microbiology

Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment.

PMID 14766602


Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate.

Related Materials

Product #



Molecular Formula

Add to Cart

2-Bromophenol, 98%