EMAIL THIS PAGE TO A FRIEND

The Journal of biological chemistry

The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells.


PMID 15031282

Abstract

The urokinase-type plasminogen activator receptor (u-PAR) plays a central role in cell migration, growth, and invasion and is regulated, in part, transcriptionally. In mice, u-PAR expression is restricted to a few tissues, one of which is the colon. We therefore screened a colon expression library for regulators of u-PAR promoter activity and identified a zinc finger protein bearing consensus sequences to the Kruppel-like family of transcription factors and showing partial homology with one of the members, KLF4. Like u-PAR, KLF4 expression is predominant in the luminal surface epithelial cells of the colonic crypt, and we hypothesized that u-PAR synthesis in these cells is directed by this transcription factor. Colon cells from KLF4 null mice showed a dramatic reduction in u-PAR protein compared with wild-type mice. Conversely, KLF4 expression in HCT116 colon cancer cells increased the amount of u-PAR protein/mRNA. Transient transfection of KLF4 with a reporter driven by 5'-deleted u-PAR promoter fragments indicated the requirement of the proximal 200 base pairs for optimal expression. Mobility-shifting experiments demonstrated binding of KLF4 to multiple regions of the u-PAR promoter (-154/-128, -105/-71, and -51/-24), and chromatin immunoprecipitation assays confirmed the binding of KLF4 to the endogenous promoter. Deletion of the -144/-123 promoter region diminished but did not eliminate the ability of KLF4 to transactivate the u-PAR promoter, suggesting cooperativity of these binding sites with respect to activation of gene expression. In conclusion, we have identified KLF4 as a novel regulator of u-PAR expression that drives the synthesis of u-PAR in the luminal surface epithelial cells of the colon.