EMAIL THIS PAGE TO A FRIEND

Endocrinology

Mechanism of angiotensin II-induced proliferation in bovine adrenocortical cells.


PMID 1505459

Abstract

The peptide hormone angiotensin-II (AII) is a potent vasoconstrictor and major regulator of aldosterone synthesis. In addition, AII also has growth-promoting effects. We have recently shown that the lipoxygenase (LO) pathway of arachidonic acid plays a major role in AII-induced aldosterone synthesis in adrenal glomerulosa cells. The LO pathway is also involved in the vasopressor and renin-inhibitory effects of AII. However, the role of LO products in AII-induced mitogenic effects have not yet been investigated. In the present studies we have evaluated the role of the LO pathway in AII-induced proliferative responses in a bovine adrenocortical cell clone termed AC1 cells. In addition, the potential receptor type and mechanism of AII-induced proliferation was studied by evaluating the effect of specific nonpeptide type 1 and type 2 AII receptor antagonists and the role of protein kinase-C (PKC). AII-induced DNA synthesis was significantly attenuated by two structurally dissimilar LO inhibitors, baicalein and phenidone. In addition, the LO product 12-hydroxyeicosatetraenoic acid (12-HETE) itself caused a significant increase in DNA synthesis, suggesting that the 12-LO pathway in part plays a role in AII-mediated mitogenesis. AII-induced proliferative responses were blocked by the type 1 AII receptor antagonist. Both AII- and 12-HETE-induced increases in DNA synthesis were markedly inhibited by two PKC blockers, staurosporine and sangivamycin. Further, both AII and 12-HETE could activate PKC by translocating it from the cytosol to the membrane fraction, as determined by Western immunoblotting. These results suggest that both 12-LO activation and protein kinase-C have an important role in AII-induced adrenal cell proliferation.