EMAIL THIS PAGE TO A FRIEND

Tsitologiia

[Interaction between filamentous actin and lipid bilayer causes the increase of syringomycin E channel-forming activity].


PMID 15473373

Abstract

The effect of filamentous (F) actin on the channel-forming activity of syringomycin E (SRE) in negatively charged and uncharged bilayer lipid membranes (BLM) was studied. F-actin did not affect the membrane conductance in the absence of SRE. No changes in SRE-induced membrane conductance were observed when the above agents were added to the same side of BLM. However, the opposite side addition of F-actin and SRE provokes a multiple increase in membrane conductance. The similar voltage dependence of membrane conductance, equal values of single channel conductance and the effective gating charge of the channels upon F-actin action suggests that the actin-dependent increase in BLM conductance may result from an increase in the number of opened SRE-channels. BLM conductance kinetics depends on the sequence of SRE and F-actin addition, suggesting that actin-dependent rise of conductance may be induced by BLM structural changes that follow F-actin adsorption. F-actin exerted similar effect on membrane conductance of both negatively charged and uncharged bilayers, as well as on conductance of BLM with high ionic strength bathing solution, suggesting the major role for hydrophobic interactions in F-actin adsorption on lipid bilayer.