EMAIL THIS PAGE TO A FRIEND

Biochemistry

Identification of an unusual [2Fe-2S]-binding motif in the CDP-6-deoxy-D-glycero-l-threo-4-hexulose-3-dehydrase from Yersinia pseudotuberculosis: implication for C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses.


PMID 15518577

Abstract

CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E(1)) catalyzes the C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis. E(1) is a pyridoxamine 5'-phosphate (PMP)-dependent enzyme that also contains a [2Fe-2S] center. This iron-sulfur cluster is catalytically essential, since removal of the [2Fe-2S] center leads to inactive enzyme. To identify the [2Fe-2S] core in E(1) and to study the effect of impairing the iron-sulfur cluster on the activity of E(1), a series of E(1) cysteine mutants were constructed and their catalytic properties were characterized. Our results show that E(1) displays a cluster-binding motif (C-X(57)-C-X(1)-C-X(7)-C) that has not been observed previously for [2Fe-2S] proteins. The presence of such an unusual iron-sulfur cluster in E(1), along with the replacement of the active site lysine by a histidine residue (H220), reflects a distinct evolutionary path for this enzyme. The cysteine residues (C193, C251, C253, C261) implicated in the binding of the iron-sulfur cluster in E(1) are conserved in the sequences of its homologues. It is likely that E(1) and its homologues constitute a new subclass in the family of iron-sulfur proteins, which are distinguished not only by their cluster ligation patterns but also by the chemistry used in catalyzing a simple, albeit mechanistically challenging, reaction.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

82890
Pyridoxamine-5′-phosphate, ≥98.0% (HPLC)
C8H13N2O5P