EMAIL THIS PAGE TO A FRIEND

Molecular biology of the cell

Phospholipase D is involved in myogenic differentiation through remodeling of actin cytoskeleton.


PMID 15616193

Abstract

We investigated the role of phospholipase D (PLD) and its product phosphatidic acid (PA) in myogenic differentiation of cultured L6 rat skeletal myoblasts. Arginine-vasopressin (AVP), a differentiation inducer, rapidly activated PLD in a Rho-dependent way, as shown by almost total suppression of activation by C3 exotoxin pretreatment. Addition of 1-butanol, which selectively inhibits PA production by PLD, markedly decreased AVP-induced myogenesis. Conversely, myogenesis was potentiated by PLD1b isoform overexpression but not by PLD2 overexpression, establishing that PLD1 is involved in this process. The expression of the PLD isoforms was differentially regulated during differentiation. AVP stimulation of myoblasts induced the rapid formation of stress fiber-like actin structures (SFLSs). 1-Butanol selectively inhibited this response, whereas PLD1b overexpression induced SFLS formation, showing that it was PLD dependent. Endogenous PLD1 was located at the level of SFLSs, and by means of an intracellularly expressed fluorescent probe, PA was shown to be accumulated along these structures in response to AVP. In addition, AVP induced a PLD-dependent neosynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), which also was accumulated along actin fibers. These data support the hypothesis that PLD participates in myogenesis through PA- and PIP2-dependent actin fiber formation.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

V0377
[Arg8]-Vasopressin solution, Grade VI (synthetic), ~100 I.U./mL in 0.9% NaCl
C46H65N15O12S2