EMAIL THIS PAGE TO A FRIEND

Xenobiotica; the fate of foreign compounds in biological systems

Identification of glutathione conjugates and mercapturic acids of 1,2-dibromopropane in female BALB/c mice by liquid chromatography-electrospray ionization tandem mass spectrometry.


PMID 15788371

Abstract

Based on recent results that 1,2-dibromopropane (1,2-DBP) causes hepatotoxicity and immunotoxicity in female BALB/c mice as well as a reduction of hepatic glutathione levels, the possible formation of glutathione conjugates and mercapturic acids of 1,2-DBP was investigated in vivo in the present studies. The following four metabolites were identified in the liver at 12 h after treatment with 1,2-DBP, by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS): M1, 2-hydroxypropylglutathione; M2, 2-oxopropylglutathione; M3, N-acetyl-S-(2-hydroxypropyl)-L-cysteine; and M4, N-acetyl-S-(2-oxopropyl)-L-cysteine. Ions of individual conjugates were observed at m/z 366, 364, 222 and 220, respectively. Characteristic product ions at m/z 237, 217, 204 and 202 for the identification of M1, M2, M3 and M4 were observed, respectively. In the sera isolated from the same animals, only mercapturic acids (M3 and M4) were observed by LC-ESI/MS. When female BALB/c mice were treated orally with 1,2-DBP at doses of 150, 300 and 600 mg kg(-1) once for 12 h, the production of glutathione conjugates and mercapturic acids in liver was apparently dose dependent, as were the concentrations of them in sera. When the production of metabolites from 1,2-DBP was investigated in liver following oral treatment with 600 mg kg(-1) 1,2-DBP for 6, 12, 24 and 48 h, metabolite concentrations were greatest at the first time point (6 h). The results explain the authors' previous studies that oral treatment with 1,2-DBP reduces the hepatic content of glutathione.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

140961
1,2-Dibromopropane, 97%
C3H6Br2