EMAIL THIS PAGE TO A FRIEND

Toxicology and applied pharmacology

Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice.


PMID 15893539

Abstract

Methacrylonitrile (MAN) and acrylonitrile (AN) are metabolized via glutathione (GSH) conjugation or epoxide formation. We have recently shown that CYP2E1 is essential for AN epoxidation and subsequent cyanide liberation. Current studies were designed to compare the enzymatic basis of MAN vs. AN metabolism to cyanide using wild-type (WT), CYP2E1-, and mEH-null mice. Mice received a single gavage dose of 0.047, 0.095, 0.19, or 0.38 mmol/kg of MAN or AN, and blood cyanide was measured at 1 or 3 h later. Blood cyanide levels in WT mice treated with AN or MAN were dose and time dependent. At equimolar doses, significantly higher levels of cyanide were detected in the blood of MAN- vs. AN-treated mice. Further, while significant reduction in blood cyanide levels occurred in MAN-treated CYP2E1-null vs. WT mice, AN metabolism to cyanide was largely abolished in CYP2E1-null mice. Pretreatment of mice with 1-aminobenzotriazole (ABT, CYP inhibitor) demonstrated that CYPs other than CYP2E1 also contribute to MAN metabolism to cyanide. Blood cyanide levels in mEH-null mice treated with aliphatic nitriles are generally lower than levels in similarly treated WT mice. Western blot analysis showed that expression of sEH was greater in male vs. female mice. The role of various epoxide hydrolases (EHs) in the production of cyanide from aliphatic nitriles is apparently structure and dose dependent. Regardless of genotype, significantly higher levels of cyanide were measured in the blood of male vs. female mice treated with MAN or AN. In conclusion, these data showed that (1) at equimolar doses, higher blood cyanide levels were detected in mice treated with MAN vs. AN; (2) while CYP2E1 is the only enzyme responsible for AN metabolism to cyanide, other CYPs also contribute to MAN metabolism; and (3) significantly higher levels of cyanide were measured in the blood of male vs. female treated with either nitrile. Higher blood cyanide levels in male vs. female mice and in MAN- vs. AN-treated mice may explain the gender-related differences in the toxicity of these chemicals and the greater potency of MAN vs. AN.