Journal of molecular neuroscience : MN

Nicotine stimulates expression of the PNMT gene through a novel promoter sequence.

PMID 15968085


Transcription of the gene encoding the epinephrine-synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT, E.C. accelerates in response to hormonal and neural stimuli. Cholinergic stimulation through neuronal nicotinic receptors constitutes the primary means for neural regulation of PNMT expression in the adrenal medulla (AM). Therefore, the regulatory sequence conveying responsiveness of the PNMT gene to nicotinic stimuli has been characterized in the 5' upstream region of the rat PNMT promoter. Functional analyses using nested deletion and substitution mutations of the PNMT promoter map the nicotine responsive region to a sequence spanning -633 to -595 bp, designated the PNMT nicotine-responsive element (NicRE). Sequences at the 5' (-633 to -620) and 3' (-599 to -595) ends of this region are essential to convey nicotine responsiveness to PNMT promoter constructs expressed in primary bovine chromaffin cells and in selected lines derived from mouse pheochromocytomas and human neuroblastomas. Profiles of nuclear proteins associating with PNMT promoter sequences also change following nicotine treatment of these cells. Electrophoretic mobility shift and DNase I footprinting analyses distinguish multiple sites of DNA-protein interactions within the NicRE region. Because the PNMT promoter does not contain a cAMP responsive element (the site through which nicotine stimulation is mediated for other catecholamine-synthesizing and AM genes), the NicRE of the PNMT gene must therefore be distinct. Thus, nicotinic cholinergic stimuli appear to regulate expression of the epinephrine-synthesizing gene PNMT through a previously uncharacterized regulatory element.

Related Materials

Product #



Molecular Formula

Add to Cart

2-Amino-1-phenylethanol, 98%