EMAIL THIS PAGE TO A FRIEND

Proceedings of the National Academy of Sciences of the United States of America

SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase.


PMID 16002467

Abstract

The nine-residue lipodepsipeptide syringomycin E, elaborated as a phytotoxin by Pseudomonas syringae pv. syringae B301D contains a 4-Cl-L-Thr-9 moiety where failure to chlorinate results in a 3-fold drop in biological activity. The proteins SyrB1 and SyrB2 encoded by the biosynthetic cluster are shown to act as a substrate and enzyme pair for SyrB2-mediated chlorination of the aminoacyl-S-enzyme L-Thr-S-SyrB1. SyrB2 is a member of the nonheme Fe(II) alpha-ketoglutarate-dependent enzyme superfamily, and requires O2 and alpha-ketoglutarate as well as chloride ion to carry out monochlorination of the -CH3 group of L-Thr-S-SyrB1. Chlorination of L-Thr-S-SyrB1 was validated by thioesterase-mediated release of L-Thr and 4-Cl-L-Thr, N-derivatization as fluorescent isoindoles, and HPLC separation compared with authentic standards. Incubations with L-[14C]Thr and [36Cl-] as well as MS of the released products further validated identification. Enzymatic oxidative halogenation is a previously uncharacterized reaction type for nonheme Fe(II) enzymes and may be the general mode for biosynthetic halogenation of aliphatic carbons of natural products.