International journal of toxicology

Phenylacetaldehyde oxidation by freshly prepared and cryopreserved guinea pig liver slices: the role of aldehyde oxidase.

PMID 16036769


Phenylacetaldehyde is formed when the xenobiotic and biogenic amine 2-phenylethylamine is inactivated by a monoamine oxidase-catalyzed oxidative deamination. Exogenous phenylacetaldehyde is found in certain foodstuffs such as honey, cheese, tomatoes, and wines. 2-Phenylethylamine can trigger migraine attacks in susceptible individuals and can become fairly toxic at high intakes from foods. It may also function as a potentiator that enhances the toxicity of histamine and tyramine. The present investigation examines the metabolism of phenylacetaldehyde to phenylacetic acid in freshly prepared and in cryopreserved guinea pig liver slices. In addition, it compares the relative contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase in the oxidation of phenylacetaldehyde using specific inhibitors for each oxidizing enzyme. The inhibitors used were isovanillin for aldehyde oxidase, allopurinol for xanthine oxidase, and disulfiram for aldehyde dehydrogenase. In freshly prepared liver slices, phenylacetaldehyde was converted mainly to phenylacetic acid, with traces of 2-phenylethanol being present. Disulfiram inhibited phenylacetic acid formation by 80% to 85%, whereas isovanillin inhibited acid formation to a lesser extent (50% to 55%) and allopurinol had little or no effect. In cryopreserved liver slices, phenylacetic acid was also the main metabolite, whereas the 2-phenylethanol production was more pronounced than that in freshly prepared liver slices. Isovanillin inhibited phenylacetic acid formation by 85%, whereas disulfiram inhibited acid formation to a lesser extent (55% to 60%) and allopurinol had no effect. The results in this study have shown that, in freshly prepared and cryopreserved liver slices, phenylacetaldehyde is converted to phenylacetic acid by both aldehyde dehydrogenase and aldehyde oxidase, with no contribution from xanthine oxidase. Therefore, aldehyde dehydrogenase is not the only enzyme responsible in the metabolism of phenylacetaldehyde, but aldehyde oxidase may also be important and thus its role should not be ignored.

Related Materials

Product #



Molecular Formula

Add to Cart

3-Hydroxy-4-methoxybenzaldehyde, 99%
Isovanillin, ≥95.0%