EMAIL THIS PAGE TO A FRIEND

Diabetes

Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress.


PMID 16249455

Abstract

Dicarbonyl and oxidative stress may play important roles in the development of diabetes complications, and their response to hyperglycemia could determine individual susceptibility to diabetic nephropathy. This study examines the relationship of methylglyoxal, 3-deoxyglucosone (3DG), and oxidative stress levels to diabetic nephropathy risk in three populations with diabetes. All subjects in the Overt Nephropathy Progressor/Nonprogressor (ONPN) cohort (n = 14), the Natural History of Diabetic Nephropathy study (NHS) cohort (n = 110), and the Pima Indian cohort (n = 45) were evaluated for clinical nephropathy, while renal structural measures of fractional mesangial volume [Vv(Mes/glom)] and glomerular basement membrane (GBM) width were determined by electron microscopy morphometry in the NHS and Pima Indian cohorts. Methylglyoxal and 3DG levels reflected dicarbonyl stress, while reduced glutathione (GSH) and urine 8-isoprostane (8-IP) measured oxidative stress. Cross-sectional measures of methylglyoxal production by red blood cells incubated in 30 mmol/l glucose were increased in nephropathy progressors relative to nonprogressors in the ONPN (P = 0.027) and also reflected 5-year GBM thickening in the NHS cohort (P = 0.04). As nephropathy progressed in the NHS cohort, in vivo levels of methylglyoxal (P = 0.036), 3DG (P = 0.004), and oxidative stress (8-IP, P = 0.007 and GSH, P = 0.005) were seen, while increased methylglyoxal levels occurred as nephropathy progressed (P = 0.0016) in the type 2 Pima Indian cohort. Decreased glyceraldehyde-3-phosphate dehydrogenase activity also correlated with increased methylglyoxal levels (P = 0.003) in the NHS cohort. In conclusion, progression of diabetic nephropathy is significantly related to elevated dicarbonyl stress and possibly related to oxidative stress in three separate populations, suggesting that these factors play a role in determining individual susceptibility.