Visual neuroscience

Origin of electroretinogram amplitude growth during light adaptation in pigmented rats.

PMID 16638169


We assessed the growth of the rat photopic electroretinogram (ERG) during light adaptation and the mechanisms underlying this process. Full field ERG responses were recorded from anesthetized adult Brown-Norway rats at each minute for 20 min of light adaptation (backgrounds: 1.8, 2.1, 2.4 log scotopic cd m(-2)). The rat photopic b-wave amplitude increased with duration of light adaptation and its width at 33% maximal amplitude narrowed (by approximately 40 ms). These effects peaked 12-15 min after background onset. The narrowing of the b-wave reflected steepening of the b-wave recovery phase, with little change in the rising phase. OP amplitudes grew in proportion to the b-wave. Inhibition of inner retinal responses using TTX resulted in a greater relative growth of b-wave and OP amplitude compared with fellow control eyes, and delayed the change in recovery phase by approximately 5 min. Inhibition of all ionotropic glutamate receptors with CNQX/D-AP7 delayed both rising and recovery phases equally (approximately 12 ms) without altering b-wave width or the time course of adaptation changes. These outcomes suggest that inner retinal light responses are not directly responsible for b-wave amplitude growth, but may contribute to the change in its recovery phase during adaptation. A TTX-sensitive mechanism may help to hasten this process. The cone a-wave was isolated using PDA/L-AP4 or CNQX/L-AP4. A-wave amplitude (35 ms after stimulus onset) also increased with time during light adaptation and reached a maximum (130 +/- 29% above baseline) 12-15 min after background onset. B-wave amplitude growth in fellow control eyes closely followed the course and relative magnitude of cone a-wave amplitude growth. Hence, the increase of the cone response during light adaptation is sufficient to explain b-wave amplitude growth.