EMAIL THIS PAGE TO A FRIEND

Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban

A comparative study of 99mTc-YIGSR and 99mTc-MIBI uptake in tumor cells.


PMID 16696334

Abstract

To investigate a new kind of tumor tracer 99mTc-YIGSR developed from a five amino structure (YIGSR) of the Laminin -chain, which can bind to the laminin receptors of tumor specifically, and radiolabeled with MAG3. (1) Preparation of the 99mTc-YIGSR probe: with S-Acetly-NH3-MAG3 as the chelator and with proper reductants YIGSR was labeled with 99mTc; (2) Cell culture and viability measurement: EAC was maintained in RPMI 1640 supplemented with calf serum; the trypan blue exclusion was applied to calculate the cell viability; (3) Study of the cell dynamic: The EAC's uptake of 99mTc-YIGSR and 99mTc-MIBI was observed at 37 degrees C and 22 degrees C, respectively. (1) The labeling efficiencies of 99mTc-YIGSR and 99mTc-MIBI were (62 +/- 3)% and (96 +/- 2)%, respectively; (2) The cell viability was declined with time of incubation; (3) At 37 degrees C, the EAC'S uptake of 99mTc-YIGSR and 99mTc-MIBI reached the peak of (43.16 +/- 2.4) % and (24.4 +/- 1.8) % at 60 min, respectively; and at 22 degrees C, the highest uptake was (26.5 +/- 2.1) % and (9.47 +/- 1.9) % at 60 min, respectively. The in vitro study suggests that 99mTc-YIGSR is superior to 99mTc-MIBI in cell uptake and has potential value in tumor imaging.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

T7154
Tyr-Ile-Gly-Ser-Arg, ≥97% (HPLC)
C26H42N8O8