American journal of physiology. Regulatory, integrative and comparative physiology

Ontogeny of excitatory and inhibitory control of gastrointestinal motility in the African clawed frog, Xenopus laevis.

PMID 16709647


The transparent body wall of Xenopus laevis larvae during the first developmental stages allows in vivo studies of gastrointestinal tract activity. The purpose of this study was to chart the ontogeny of gut motility in Xenopus larvae and to identify the most important control systems during the first developmental stages. Coordinated descending contraction waves first occurred in the gut at Nieuwkoop and Faber stage 43 [0.8 +/- 0.1 contractions/min (cpm)] and increased to 4.9 +/- 0.1 cpm at stage 47. The cholinergic receptor agonist carbachol (5-10 microM) increased contraction frequency already at stage 43, as did neurokinin A (NKA, 0.3-1 microM). The muscarinic antagonist atropine (100 microM) first affected contraction frequency at stage 45, which coincides with the onset of feeding. The tachykinin antagonist MEN-10,376 (6 microM) blocked NKA-induced contractions but not spontaneous motility. Both sodium nitroprusside [nitric oxide (NO) donor, 1-10 microM] and vasoactive intestinal peptide (VIP, 0.1-1 microM) inhibited contractions from the earliest stage onward. Blocking NO synthesis using NG-nitro-L-arginine methyl ester (100 microM) had no effect per se, but antagonized VIP evoked inhibition at stage 47. We conclude that gastrointestinal motility is well developed in the Xenopus laevis larvae before the onset of feeding. Functional muscarinic and tachykinin receptors are present already at the onset of motility, whereas a cholinergic tone develops around the onset of feeding. No endogenous tachykinin tone was found. Functional VIP receptors mediate inhibition at the onset of motility. NO seems to mediate the VIP effect at later stages.

Related Materials

Product #



Molecular Formula

Add to Cart

MEN-10,376, ≥95% (HPLC), solid