EMAIL THIS PAGE TO A FRIEND

Journal of cell science

Myosin light chain kinase plays a role in the regulation of epithelial cell survival.


PMID 16723733

Abstract

Myosin II activation is essential for stress fiber and focal adhesion formation, and is implicated in integrin-mediated signaling events. In this study we investigated the role of acto-myosin contractility, and its main regulators, i.e. myosin light chain kinase (MLCK) and Rho-kinase (ROCK) in cell survival in normal and Ras-transformed MCF-10A epithelial cells. Treatment of cells with pharmacological inhibitors of MLCK (ML-7 and ML-9), or expression of dominant-negative MLCK, led to apoptosis in normal and transformed MCF-10A cells. By contrast, treatment of cells with a ROCK inhibitor (Y-27632) did not induce apoptosis in these cells. Apoptosis following inhibition of myosin II activation by MLCK is probably meditated through the death receptor pathway because expression of dominant-negative FADD blocked apoptosis. The apoptosis observed after MLCK inhibition is rescued by pre-treatment of cells with integrin-activating antibodies. In addition, this rescue of apoptosis is dependent on FAK activity, suggesting the participation of an integrin-dependent signaling pathway. These studies demonstrate a newly discovered role for MLCK in the generation of pro-survival signals in both untransformed and transformed epithelial cells and supports previous work suggesting distinct cellular roles for Rho-kinase- and MLCK-dependent regulation of myosin II.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C1172
ML-9, ≥99% (TLC), powder
C15H17ClN2O2S · HCl