EMAIL THIS PAGE TO A FRIEND

Cell biology and toxicology

Biochemical, ultrastructural and molecular characterization of the triphenyltin acetate (TPTA)-induced apoptosis in primary cultures of mouse thymocytes.


PMID 16802106

Abstract

Triphenyltin acetate (TPTA), a triorganotin compound used in agriculture as a biocide, is immunotoxic in vivo and in vitro. The present study was undertaken to ascertain whether apoptosis might play a role in the TPTA toxicity in vitro. Mouse thymocyte primary cultures were exposed to 0, 4 and 8 micromol/L TPTA; methyl prednisolone (1 micromol/L) was used as a positive control. Cell aliquots were harvested after 0, 1, 2, 4, and 8 h and the presence of early or late apoptotic phenomena was checked by (a) morphological investigations; (b) spectrophotometric quantification of fragmented DNA and agarose gel electrophoresis; (c) cell flow cytofluorometry, using an annexin V-FITC kit; and (d) detection of in situ apoptosis by a colorimetric detection kit (Titer-Tacs). TPTA cytotoxicity was also evaluated using the trypan blue dye exclusion test. Morphological investigation indicated apoptosis and/or necrosis. After 8 h of incubation, cells exposed to 4 micromol/L TPTA showed an increase in DNA fragmentation (on electrophoresis), which was confirmed by spectrophotometry (p < 0.05). Flow cytofluorometry pointed out an early (p < 0.05) increase of annexin V-positive (apoptotic) cells in TPTA-exposed flasks, whereas at least partly contradictory, results were obtained with the Titer-Tacs kit. Overall, these results provide evidence that TPTA, at low concentrations (4 micromol/L) induces early and late apoptotic phenomena, whereas cells exposed to the highest concentrations (8 micromol/L) are likely to undergo necrosis rather than apoptosis.