Sequence of cDNAs encoding actin depolymerizing factor and cofilin of embryonic chicken skeletal muscle: two functionally distinct actin-regulatory proteins exhibit high structural homology.

PMID 1699599


Two actin-regulatory proteins of 19 and 20 kDa are involved in the regulation of actin assembly in developing chicken skeletal muscle. They are homologous with actin depolymerizing factor (ADF) and cofilin, a pH-dependent actin-modulating protein, which were originally discovered in chicken and mammalian brain, respectively. In this study, full-length cDNA clones were isolated by screening a lambda gt11 cDNA library constructed from poly(A+) RNA of embryonic chicken skeletal muscle with the antibodies specific for each protein, and their complete sequences were determined. The chicken cofilin cDNA encoded a protein of 166 amino acids, the sequence of which had over 80% identity with that of porcine brain cofilin. The amino acid sequence of the ADF was 165 amino acids and showed about 70% identity with either chicken or mammalian cofilin, in spite of the fact that ADF and cofilin are functionally distinct. Like chicken and mammalian cofilin, ADF contained a sequence similar to the nuclear transport signal sequence of SV40 large T antigen. ADF and cofilin shared a hexapeptide identical with the amino-terminal sequence of tropomyosin as well as the regions homologous to other actin-regulatory proteins, including depactin, gelsolin, and profilin. The overall nucleotide sequences and Southern blot analysis of genomic DNA, however, indicated that the two proteins were derived from different genes.