A novel type of autophagy occurs together with vacuole genesis in miniprotoplasts prepared from tobacco culture cells.

PMID 17224627


Mature plant cells have large vacuoles. But how these vacuoles are formed has not been fully understood. It has been reported that autophagy is involved in the genesis of plant vacuoles. Thus we examined whether autophagy occurs in the vacuole genesis of a plant cell model called miniprotoplasts, in which preexisting large vacuoles have been removed. We prepared miniprotoplasts from tobacco culture cells (BY-2) and observed the formation of vacuoles by light and electron microscopy. The miniprotoplasts had few vacuoles immediately after preparation, but had large vacuoles after 1 to 2 d. When the cysteine protease inhibitor E-64c or E-64d was added to culture media, almost all vacuoles formed contained materials of cytoplasmic origin. This result suggests that autophagy occurs together with the genesis of the vacuoles in miniprotoplasts. 3-Methyladenine and phosphatidylinositol 3-kinase inhibitors such as wortmannin and LY294002, all of which block starvation?induced autophagy in tobacco culture cells and constitutive autophagy in Arabidopsis root cells, did not affect the autophagy in miniprotoplasts. Thus the form of autophagy in miniprotoplasts is probably different from the form of autophagy that arises as a result of sucrose starvation and constitutive autophagy in root tip cells. The causal connection between autophagy and vacuole genesis in miniprotoplasts was not clarified in this study.

Related Materials

Product #



Molecular Formula

Add to Cart

E-64c, Calpain Inhibitor