EMAIL THIS PAGE TO A FRIEND

American journal of physiology. Endocrinology and metabolism

Stevioside improves pancreatic beta-cell function during glucotoxicity via regulation of acetyl-CoA carboxylase.


PMID 17341549

Abstract

Chronic hyperglycemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and beta-cell turnover. The characteristic secretory defects are increased basal insulin secretion (BIS) and a selective loss of glucose-stimulated insulin secretion (GSIS). Several recent studies support the view that the acetyl-CoA carboxylase (ACC) plays a pivotal role for GSIS. We have shown that stevioside (SVS) enhances insulin secretion and ACC gene expression. Whether glucotoxicity influences ACC and whether this action can be counteracted by SVS are not known. To investigate this, we exposed isolated mouse islets as well as clonal INS-1E beta-cells for 48 h to 27 or 16.7 mM glucose, respectively. We found that 48-h exposure to high glucose impairs GSIS from mouse islets and INS-1E cells, an effect that is partly counteracted by SVS. The ACC dephosphorylation inhibitor okadaic acid (OKA, 10(-8) M), and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 10(-4) M), an activator of 5'-AMP protein kinase that phosphorylates ACC, eliminated the beneficial effect of SVS. 5-Tetrade-cyloxy-2-furancarboxylic acid (TOFA), the specific ACC inhibitor, blocked the effect of SVS as well. During glucotoxity, ACC gene expression, ACC protein, and phosphorylated ACC protein were increased in INS-1E beta-cells. SVS pretreatment further increased ACC gene expression with strikingly elevated ACC activity and increased glucose uptake accompanied by enhanced GSIS. Our studies show that glucose is a potent stimulator of ACC and that SVS to some extent counteracts glucotoxicity via increased ACC activity. SVS possesses the potential to alleviate negative effects of glucotoxicity in beta-cells via a unique mechanism of action.