The journal of physical chemistry. B

Redox characteristics of a de novo quinone protein.

PMID 17388486


The electrochemistry of 2,6-dimethylbenzoquinone (DMBQ) has been characterized for three different systems: DMBQ freely solvated in aqueous buffer; DMBQ bound to a neutral, blocked cysteine (N-acetyl-L-cysteine methyl ester) and the resulting DMBQ-bCys compound solvated in aqueous buffer; and DMBQ bound to a small model protein denoted alpha(3)C. The goal of this study is to detect and characterize differences in the redox properties of the protein-ligated DMBQ relative to the solvated quinones. The alpha(3)C protein used here is a tryptophan-32 to cysteine-32 variant of the structurally defined alpha(3)W de novo protein (Dai et al. J. Am. Chem. Soc. 2002, 124, 10952-10953). The properties of alpha(3)C were recently described (Hay et al. Biochemistry 2005, 44, 11891-11902). DMBQ was covalently bound to bCys and alpha(3)C through a sulfur substitution reaction with the cysteine thiol. In contrast to the solvated DMBQ and DMBQ-bCys compounds, diffusion controlled electrochemistry of DMBQ-alpha(3)C showed well-behaved and fully reversible n = 2 oxidation/reduction with a peak separation of approximately 30 mV between pH 5 and 9. DMBQ-alpha(3)C could also be immobilized on a gold electrode modified with a self-assembled monolayer of 3-mercaptopropionoic acid, allowing the measurement, by cyclic voltammetry, of an apparent rate of electron transfer of 22 s(-1). The (cysteine) sulfur substitution significantly lowers one of the hydroquinone pKA's from 10.4 in DMBQ to 6.8 in DMBQ-bCys. This pKA is slightly elevated in DMBQ-alpha(3)C to 7.0 and the E1/2 at pH 7.0 is raised by 110 mV from +190 mV in DMBQ-bCys to +297 mV in DMBQ-alpha(3)C.

Related Materials

Product #



Molecular Formula

Add to Cart

2,6-Dimethylbenzoquinone, 99%