EMAIL THIS PAGE TO A FRIEND

Investigative ophthalmology & visual science

Inhibitory effects of retinoic acid receptor alpha stimulants on murine cataractogenesis through suppression of deregulated calpains.


PMID 17460283

Abstract

To determine whether retinoic acid (RA)-mediated inhibition of deregulated calpains had any effect on the development of cataract given that accumulating evidence has demonstrated a possible relationship between cataractogenesis and inappropriate activation of calpains. The authors examined for Ca(2+) influx and expression alteration of calpains in F9 cells with or without RAs, such as all-trans retinoic acid (ATRA), and specific stimulant of retinoic acid receptor alpha (RARalpha; Am580) in the presence of oxidative stress, such as mediated by H(2)O(2). They next examined the clinical relevance of RAs by applying these agents to a murine diabetic cataract and observed the development of the disease. F9 cells constitute a well-established autonomous cell model for investigating retinoid signaling, partially representing the lens epithelial phenotype, as determined by the expression of aquaporin 0, a specific differentiation marker for lens cells. Treatment with ATRA and Am580 significantly decreased the influx of Ca(2+) into the cells, causally resulting in decreased mRNA expression and inhibited activation of calpains. In addition, RARalpha agonists significantly abrogated the upregulation of calpain 2 induced by H(2)O(2), which is a potential etiological contributor to the diabetic cataract, whereas H(2)O(2) had no effect on calpain 1. Importantly, this RA-mediated gene-expression alteration was sufficient for dramatically inhibiting the development of lens opacity in mice with diabetes. Results showed that a certain type of RA inhibits Ca(2+) elevation and subsequent overactivation of calpains, suggesting the potential feasibility of calpain-targeting therapies mediated by RA for cataract.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

A8843
AM580, ≥98% (HPLC)
C22H25NO3