Development of sensitive chemical and immunochemical methods for detecting sulfated sialic acids and their application to glycoconjugates from sea urchin sperm and eggs.

PMID 17532551


Sulfated sialic acid (SiaS) is a unique sialic acid (Sia) derivative in which an additional anionic group is attached to a carboxylated monosaccharide. Very little is known about the occurrence and biologic function of SiaS, due to the limitations of analytical methods to detect it in minute amounts. In this study, to develop methods and probes for detecting and pursuing the functions of SiaS, we developed sensitive chemical and immunochemical detection methods. First, we synthesized as model compounds 4-methylumbelliferyl glycosides of 8-O- and 9-O-sulfated Sia consisting of N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (Kdn). Second, we applied fluorometric high performance liquid chromatography (HPLC) analysis to these synthetic glycosides. After acid hydrolysis of the samples, the liberated SiaS were labeled with a fluorescent reagent, 1,2-diamino-4,5-methylenedioxybenzene, and analyzed on fluorometric HPLC. We established an optimal elution condition for successful separation of 8-O- and 9-O-sulfated Neu5Ac, Neu5Gc, and Kdn on HPLC. Third, we generated a monoclonal antibody (mAb) 2C4 against SiaS using sea urchin egg components as the immunogen. mAb.2C4 recognizes both 8-O-sulfated Neu5Ac (Neu5Ac8S) and Neu5Gc8S, whereas the previously prepared mAb.3G9 only recognizes Neu5Ac8S. Finally, using the fluorometric HPLC and monoclonal antibodies, we demonstrated that glycoconjugates from sea urchin sperm exclusively contained Neu5Ac8S, whereas those from eggs contained Neu5Gc8S. Furthermore, we clarified the quantitative differences in the SiaS content in eggs and sperm from two different species of sea urchins. Immunostaining using mAb.2C4 showed that Neu5Gc8S is localized in the cortical granules in unfertilized eggs, whereas it is localized in the outer surface of the fertilization layer as well as in the inner surface of fertilized eggs. Thus, 8-O-sulfation is dependent on the species, gametic cell-type, site-localization of the eggs, and glycoconjugates.