EMAIL THIS PAGE TO A FRIEND

Electrophoresis

CE with electrochemical detection for investigation of label-free recognition of amino acid amides by guanine-rich DNA aptamers.


PMID 17674419

Abstract

In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/AgCl), while Tym was detected well on a platinum electrode at 1.3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym by the aptamers. The mechanisms for binding model molecules by aptamers were discussed. Not as expected, these aptamers were not to form the G-quartets, which were generally responsible for binding the ligands when the guanine-rich aptamers were used.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

A3913
L-Argininamide dihydrochloride
C6H15N5O · 2HCl