EMAIL THIS PAGE TO A FRIEND

Biochimica et biophysica acta

Ontogeny up-regulates renal Na(+)/Cl(-)/creatine transporter in rat.


PMID 17916324

Abstract

Creatine plays a role in energy storage and transport/shuttle of high-energy phosphate in heart, brain, retina, testis and skeletal muscle. These tissues take creatine from the plasma via a 2Na(+)/1Cl(-)/1creatine cotransporter (CRT). We have previously demonstrated that renal apical membrane presents a 2Na(+)/1Cl(-)/1creatine cotransport activity. The goal of this study was to determine whether this transporter is ontogenically regulated. Na(+)/Cl(-)/creatine transport activity was evaluated by measuring [(14)C]-creatine uptake into renal brush-border membrane vesicles. CRT mRNA expression was measured by Northern and real-time PCR assays. E20 foetuses, newborn, suckling, weaning and adult (2- and 8-month-old) Wistar rats were used. The results revealed that neither the vesicular volume, the binding of creatine to the brush-border membrane vesicles, nor the purity of the brush-border membrane vesicle preparations was affected by maturation. Fetal and neonatal kidneys contained a creatine transporter that was qualitatively indistinguishable from that in the adult: it was concentrative, Na(+)- and Cl(-)-dependent, electrogenic and inhibited by guanidinopropionic acid. Maturation increased this transport activity by increasing the maximal rate of transport (V(max)) without significantly changing the apparent K(m). Northern analysis revealed two transcripts for CRT of 2.7 kb and 4.2 kb in all the ages tested. Northern and real-time PCR assays showed that, as seen with NaCl-dependent creatine transport activity, maturation increased CRT mRNA expression. This study reports for the first time that: (i) an apical renal Na(+)/Cl(-)/creatine cotransporter is already active in rat foetuses and (ii) development regulates Na(+)/Cl(-)/creatine cotransport activity by increasing the density and/or turnover of the transporters.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

G6878
3-Guanidinopropionic acid
C4H9N3O2