EMAIL THIS PAGE TO A FRIEND

Biochemical and biophysical research communications

Structure-based discovery of a family of synthetic cyclophilin inhibitors showing a cyclosporin-A phenotype in Caenorhabditis elegans.


PMID 17927958

Abstract

Cyclophilins, which are found in all cellular compartments and with diverse biological roles, are now drug targets for a number of diseases including HIV infection, malaria and ischaemia. We used the database-mining program LIDAEUS and in silico screening to discover the dimedone family of inhibitors which show a conserved 'ball and socket' binding mode with a dimethyl group in the hydrophobic binding pocket of human cyclophilin A (CypA) mimicking a key interaction of the natural inhibitor cyclosporin A (CsA). The most potent derivative binds CypA with a K(d) of 11.2+/-9.2 microM and an IC50 for activity against Caenorhabditis elegans (C. elegans) of 190 microM compared to 28 microM for CsA. These dimedone analogues provide a new scaffold for the synthesis of families of peptidomimetic molecules with potential activity against HIV, malaria, and helminth parasite infections.