Journal of neurochemistry

Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model.

PMID 17944870


Following cellular stress or tissue injury, the proteasome plays a critical role in protein degradation and signal transduction. The present study examined the beta-subunit expression of constitutive proteasomes (beta1, beta2, and beta5), immunoproteasomes (beta1i, beta2i, and beta5i) and the 11S proteasome activator, PA28alpha, in the rat CNS after traumatic brain injury (TBI). Concomitant measures assessed changes in proteasome activities. Quantitative real time PCR results indicated that beta1 and beta2 mRNA levels were not changed, while beta5 mRNA levels were significantly decreased in injured CNS following TBI. However, beta1i, beta2i, beta5i, and PA28alpha mRNA levels were significantly increased in the injured CNS. Western blotting studies found that beta1, beta2, beta5, beta2i, and beta5i subunit protein levels remained unchanged in the injured CNS, but beta1i and PA28alpha protein levels were significantly elevated in ipsilateral cerebral cortex and hippocampus. Proteasome activity assays found that peptidyl glutamyl peptide hydrolase-like and chymotrypsin-like activity were significantly reduced in the CNS after TBI, and that trypsin-like proteasome activity was increased in the injured cerebral cortex. Our results demonstrated that both proteasome composition and function in the CNS were affected by trauma. Treatments that preserve proteasome function following CNS injury may be beneficial as an approach to cerebral neuroprotection.