EMAIL THIS PAGE TO A FRIEND

American journal of physiology. Lung cellular and molecular physiology

IL-1beta, BK, and TGF-beta1 attenuate PGI2-mediated cAMP formation in human pulmonary artery smooth muscle cells by multiple mechanisms involving p38 MAP kinase and PKA.


PMID 18156442

Abstract

We have previously shown that interleukin (IL)-1beta, transforming growth factor (TGF)-beta1, or bradykinin (BK) impair cAMP generation in response to prostacyclin analogs in human pulmonary artery smooth muscle (PASM), suggesting that inflammation can impair the effects of prostacyclin analogs on PASM in pulmonary hypertension. Here we explored the biochemical mechanisms involved. We found that IL-1beta, BK, and TGF-beta1 reduced adenylyl cyclase isoform 1, 2, and 4 mRNA, increased Galphai protein levels, and reduced prostacyclin receptor (IP receptor) mRNA expression. In contrast, Galphas protein levels were unchanged. Protein kinase A (PKA) (H-89, KT-2750, PKIm) and p38 mitogen-activated protein (MAP) kinase (SB-202190) inhibitors attenuated these effects, but protein kinase C (bisindolylmaleide) or phosphoinositol 3-kinase (LY-294002) inhibitors did not. Fluorescent kemptide assay and Western blotting confirmed that PKA and p38 MAP kinase were activated by IL-1beta, BK, and TGF-beta1. These studies suggest that IL-1beta, BK, and TGF-beta1 impair IP receptor-mediated cAMP accumulation by multiple effects on different components of the signaling pathway and that these effects are PKA and p38 MAP kinase dependent.