EMAIL THIS PAGE TO A FRIEND

Progress in neuro-psychopharmacology & biological psychiatry

Activation of the serotonin 5-HT3 receptor in the dorsal raphe nucleus suppresses REM sleep in the rat.


PMID 18295951

Abstract

The effects of the selective 5-HT(3) receptor agonist and antagonist m-chlorophenylbiguanide (m-CPBG) and ondansetron, respectively, were studied in adult male Wistar rats implanted for chronic sleep recordings. Microinjection of m-CPBG (2.0 and 4.0 mM) into the dorsal raphe nucleus (DRN) decreased rapid-eye-movement sleep (REMS) and the number of REM periods during the first, second, and third 2-h recording period. On the other hand, direct infusion of ondansetron (0.5-1.0 mM) into the DRN induced no significant changes in sleep variables over the 6 h of recording. Pretreatment with ondansetron (0.5 mM) antagonized the m-CPBG (2.0 mM)-induced reduction of REMS and of the number of REM periods. The data are consistent with the hypothesis that the 5-HT(3) receptor is involved in the effect of DRN serotonergic neurons on brainstem structures that act to promote and induce REMS. It is suggested that the suppression of REMS after the microinjection of m-CPBG into the DRN is related, at least in part, to the stimulation of glutamatergic interneurons that express 5-HT(3) receptors. Activation of these receptors facilitates the release of glutamate, which, in turn, acts on postsynaptic N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors expressed by serotonergic neurons of the DRN and increases the release of 5-HT at postsynaptic sites.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

C144
1-(3-Chlorophenyl)biguanide hydrochloride, solid
C8H10ClN5 · HCl