EMAIL THIS PAGE TO A FRIEND

Biochimica et biophysica acta

Fructose-induced structural and functional modifications of hemoglobin: implication for oxidative stress in diabetes mellitus.


PMID 18339326

Abstract

Increased fructose concentration in diabetes mellitus causes fructation of several proteins. Here we have studied fructose-induced modifications of hemoglobin. We have demonstrated structural changes in fructose-modified hemoglobin (Fr-Hb) by enhanced fluorescence emission with excitation at 285 nm, more surface accessible tryptophan residues by using acrylamide, changes in secondary and tertiary structures by CD spectroscopy, and increased thermolability by using differential scanning calorimetry in comparison with those of normal hemoglobin, HbA(0). Release of iron from hemoglobin is directly related with the extent of fructation. H2O2-induced iron release from Fr-Hb is significantly higher than that from HbA(0). In the presence of H2O2, Fr-Hb degrades arachidonic acid, deoxyribose and plasmid DNA more efficiently than HbA(0), and these processes are significantly inhibited by desferrioxamine or mannitol. Thus increased iron release from Fr-Hb may cause enhanced formation of free radicals and oxidative stress in diabetes. Compared to HbA(0), Fr-Hb exhibits increased carbonyl formation, an index of oxidative modification. Functional modification in Fr-Hb has also been demonstrated by its decreased peroxidase activity and increased esterase activity in comparison with respective HbA(0) activities. Molecular modeling study reveals Lys 7alpha, Lys 127alpha and Lys 66beta to be the probable potential targets for fructation in HbA(0).

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

H0267 Hemoglobin A0, Ferrous Stabilized human, lyophilized powder