EMAIL THIS PAGE TO A FRIEND

Biosensors & bioelectronics

Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode Its use for the simultaneous determination of ascorbic acid and uric acid.


PMID 18706798

Abstract

A composite film of polyaniline (PAN) nano-networks/p-aminobenzene sulfonic acid (ABSA) modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electro-catalytic oxidation of uric acid (UA) and ascorbic acid (AA). The ABSA monolayer at GCE surface has been characterized by X-ray photo-electron spectroscopy (XPS) and electrochemical techniques. Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV-visible absorption spectra (UV-vis) and cyclic voltammetry (CV) have been used to investigate the PAN-ABSA composite film, which demonstrates the formation of the composite film and the maintenance of the electroactivity of PAN in neutral and even in alkaline media. Due to its different catalytic effects towards the electro-oxidation of UA and AA, the modified GCE can resolve the overlapped voltammetric response of UA and AA into two well-defined voltammetric peaks with both CV and differential pulse voltammetry (DPV), which can be used for the selective and simultaneous determination of these species in a mixture. The catalytic peak currents are linearly dependent on the concentrations of UA and AA in the range of 50-250 and 35-175mumoll(-1) with correlation coefficients of 0.997 and 0.998, respectively. The detection limits for UA and AA are 12 and 7.5mumoll(-1), respectively. Besides the good stability and reproducibility of PAN-ABSA/GCE due to the covalent attachment of ABSA at GCE surface, the modified electrode also exhibits good sensitivity and selectivity.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

268445
Isethionic acid ammonium salt, 99%
C2H9NO4S
220078
Isethionic acid sodium salt, 98%
C2H5NaO4S