Mycological research

Spitzenkörper, vacuoles, ring-like structures, and mitochondria of Phanerochaete velutina hyphal tips visualized with carboxy-DFFDA, CMAC and DiOC6(3).

PMID 19114102


Growth and organelle morphology in the wood rotting basidiomycete fungus Phanerochaete velutina were examined in Petri dishes, on agar-coated slides, and in submerged cultures, using DIC, fluorescence and four-dimensional (4-D; x,y,z,t) confocal microscopy, with several fluorescent probes. Phanerochaete is ideal for this work because of its fast growth, robustness, and use in a wide range of other studies. The probe carboxy-DFFDA, widely used for labelling vacuoles, has no effect either on hyphal tip extension or colony growth at the concentrations usually applied in labelling experiments. Carboxy-DFFDA labels the vacuoles and these form a tubular reticulum in hyphal tip cells. The probe also labels extremely small vesicles (punctate fluorescence) in the apex of tip cells, the Spitzenkörper, and short tubules that undergo sequences of characteristic movements and transformations to produce various morphologies, including ring-like structures. Their location and behaviour suggest that they are a distinct group of structures, possibly a subset of vacuoles, but as yet to be fully identified. Regular incursions of tubules extending from these structures and from the vacuolar reticulum into the apical dome indicate the potential for delivery of material to the apex via tubules as well as vesicles. Such structures are potential candidates for delivering chitin synthases to the apex. Spitzenkörper behaviour has been followed as hyphal tips with linear growth encounter obstacle hyphae and, as the hydrolysis product of carboxy-DFFDA only accumulates in membrane-enclosed compartments, it can be inferred that the labelled structures represent the Spitzenkörper vesicle cloud. Mitochondria also form a reticular continuum of branched tubules in growing hyphal tips, and dual localisation with DiOC6(3) and CMAC allows this to be distinguished from the vacuolar reticulum. Like vacuolar tubules, mitochondrial tubules also span the septa, indicating that they may also be a conduit for intercellular transport.