Plant cell reports

Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum.

PMID 19381641


Sesuvium portulacastrum, a mangrove plant from seashore, is a halophyte species well adapted to salinity and drought. Some efforts have been made to describe its physiological and structural characteristics on salt and drought-tolerance, but the underlying molecular mechanism and key components have not yet been identified. Here, a fructose-1,6-bisphosphate aldolase gene, designated SpFBA, was isolated and characterized from S. portulacastrum roots in response to seawater. The SpFBA cDNA has a total length of 1452 bp with an open reading frame of 1071 bp, and is predicted to encode a precursor protein of 357 amino acid residues sharing high degree of homology with class I FBAs from other plants. Semi-quantitative RT-PCR analysis indicated that the SpFBA was more strongly expressed in roots than in leaves and stems, and the abiotic stimuli such as Seawater, NaCl, ABA, and PEG, could trigger a significant induction of SpFBA in S. portulacastrum roots within 2-12 h. Overproduction of Recombinant SpFBA resulted in an increased tolerance to salinity in transgenic Escherichia coli. All these results suggest that the SpFBA plays very important roles in responding to salt stress and related abiotic stimuli, and in improving the survival ability of S. portulacastrum under high salinity and drought.

Related Materials

Product #



Molecular Formula

Add to Cart

Dihydroxyacetone phosphate hemimagnesium salt hydrate, ≥95% (TLC)
C3H5Mg0.5O6P · xH2O