Behavioural brain research

Muscarinic receptor antagonism at the spinal cord level causes inhibitory effects on male rat sexual behavior.

PMID 19450623


The role of cholinergic neurotransmission in male rat sexual behavior at the brain level has been studied by several researchers. However, little is known about its role at the spinal cord level. In this study, the effects of the intrathecal (IT) administration of the muscarinic receptor antagonist subtypes (MRAs) methoctramine (Meth), tropicamide (Trop) and 4-DAMP on male rat sexual behavior were evaluated during three ejaculatory series. Meth and Trop are preferring antagonists for the M2/M4 receptor subtypes, and 4-DAMP is a preferring antagonist for the M3 receptor subtype. All the MRAs tested noticeably inhibited male rat copulatory behavior, reflected by a reduction in the number of animals engaging in sexual behavior and a gradual decrease in the number of animals able to ejaculate. Significant increases in intromission latency (IL), ejaculation latency (EL) and post-ejaculatory interval (PEI) were observed. The ranking of inhibitory potency in all recorded parameters was Meth>/=4-DAMP>Trop. In theory, the effects of Meth and Trop could be a result of interaction with M2/M4 receptors. However, given that the M2 receptor constitutes the greatest population of muscarinic receptors at all spinal cord sites and given the high affinity for Meth on M2 receptors, the high potency in the inhibitory effects of Meth is indicative of the special role of M2 spinal receptors in the implementation of this behavior. The weaker effects of Trop could be linked to the smaller population of M4 receptors in the spinal cord, but some interaction with M2 receptors is probable. Since some differences in the pattern of inhibitory response between Meth and 4-DAMP were observed in this and a previous study, a possible role for M3 receptors must be considered. The data obtained in this study confirm the facilitating effect of acetylcholine (ACh) at the spinal cord level on male rat sexual behavior through muscarinic mechanisms, with an important influence on ejaculatory processes. These data support the hypothesis of the modulating role of ACh on male rat sexual behavior at the spinal cord level.

Related Materials

Product #



Molecular Formula

Add to Cart

Methoctramine hydrate, ≥97% (NMR), solid
C36H62N4O2 · 4HCl · xH2O