EMAIL THIS PAGE TO A FRIEND

Microbiology (Reading, England)

Biodegradation of phenanthrene by Pseudomonas sp. strain PPD: purification and characterization of 1-hydroxy-2-naphthoic acid dioxygenase.


PMID 19574301

Abstract

Pseudomonas sp. strain PPD can metabolize phenanthrene as the sole source of carbon and energy via the 'phthalic acid' route. The key enzyme, 1-hydroxy-2-naphthoic acid dioxygenase (1-HNDO, EC 1.13.11.38), was purified to homogeneity using a 3-hydroxy-2-naphthoic acid (3-H2NA)-affinity matrix. The enzyme was a homotetramer with a native molecular mass of 160 kDa and subunit molecular mass of approximately 39 kDa. It required Fe(II) as the cofactor and was specific for 1-hydroxy-2-naphthoic acid (1-H2NA), with K(m) 13.5 microM and V(max) 114 micromol min(-1) mg(-1). 1-HNDO failed to show activity with gentisic acid, salicylic acid and other hydroxynaphthoic acids tested. Interestingly, the enzyme showed substrate inhibition with a K(i) of 116 microM. 1-HNDO was found to be competitively inhibited by 3-H2NA with a K(i) of 24 microM. Based on the pH-dependent spectral changes, the enzyme reaction product was identified as 2-carboxybenzalpyruvic acid. Under anaerobic conditions, the enzyme failed to convert 1-H2NA to 2-carboxybenzalpyruvic acid. Stoichiometric studies showed the incorporation of 1 mol O(2) into the substrate to yield 1 mol product. These results suggest that 1-HNDO from Pseudomonas sp. strain PPD is an extradiol-type ring-cleaving dioxygenase.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

109630
1-Hydroxy-2-naphthoic acid, ≥97.0%
C11H8O3