EMAIL THIS PAGE TO A FRIEND

Proceedings of the National Academy of Sciences of the United States of America

The brain-specific factor FEZ1 is a determinant of neuronal susceptibility to HIV-1 infection.


PMID 19667186

Abstract

Neurons are one of the few cell types in the human body that do not support HIV type-1 (HIV-1) replication. Although the lack of key receptors is a major obstacle to infection, studies suggest that additional functions inhibit virus replication to explain the exquisite resistance of neurons to HIV-1. However, specific neuronal factors that may explain this resistance remain to be discovered. In a screen for antiviral factors using a fibroblast line chemically mutagenized and selected for resistance to retroviral infection, we recently identified induction of rat FEZ1 (fasciculation and elongation protein zeta-1), a brain-specific protein, as the cause of this resistance. When exogenously expressed in nonneuronal cell lines rat FEZ1 blocked nuclear entry of retroviral DNA. Here, we demonstrate that among human brain cells, neurons naturally express high levels of FEZ1 compared to astrocytes or microglia cells and are correspondingly less susceptible to infection with pseudotyped HIV-1 that bypasses receptor-mediated viral entry. Demonstrating that endogenous FEZ1 was functionally important in the resistance of neurons to HIV-1 infection, siRNA-mediated knockdown of endogenous FEZ1 increased the infectivity of neurons while sensitive brain cell types like microglia became more resistant upon FEZ1 overexpression. In addition, FEZ1 expression was not induced in response to IFN treatment. As such, in contrast to other widely expressed, IFN-inducible antiviral factors, FEZ1 appears to represent a unique neuron-specific determinant of cellular susceptibility to infection in a cell type that is naturally resistant to HIV-1.