EMAIL THIS PAGE TO A FRIEND

Mutagenesis

Signalling pathways involved in 1-nitropyrene (1-NP)-induced and 3-nitrofluoranthene (3-NF)-induced cell death in Hepa1c1c7 cells.


PMID 19703935

Abstract

We previously reported that 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) elicited apoptotic cell death as well as non-apoptotic programmed cell deaths (PCDs) with paraptotic and necroptotic characteristics, respectively. In the present study, we have further confirmed and extended these findings. Flow cytometric analyses of 1-NP-exposed/3NF-exposed Hepa1c1c7 cells revealed that caspase-3 was only activated in the subpopulation of cells corresponding to that with classic apoptotic morphology. Immunocytochemical analysis indicated that leucocyte elastase inhibitor-derived DNaseII (LEI/L-DNaseII), apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were more clearly translocated to the nucleus following 3-NF exposure than after 1-NP. These 3-NF-induced changes in AIF and EndoG translocation were reduced by necrostatin-1, an inhibitor of necroptotic cell death. Both compounds lead to accumulation of lipid droplets and induced DNA damage. Activation of checkpoint kinase (CHK) 1 and H2AX, but not ataxia telangiectasia mutated and CHK2, were observed. Furthermore, inhibition of p53 using pifithrin-alpha reduced the cell death induced by both compounds, suggesting a role of DNA damage/CHK1/p53 pathway in the death process. 1-NP-induced cell death was in addition characterized by increased oxidative damage and intracellular accumulation of Ca(2+). These findings further support the notion that 1-NP elicited apoptotic cell death and PCD with paraptotic characteristics, while 3-NF induced apoptosis and a PCD with necroptotic features.