Toxicology mechanisms and methods

Dose Related Absorption of JP-8 Jet Fuel Hydrocarbons Through Porcine Skin with Quantitative Structure Permeability Relationship Analysis.

PMID 20021142


The effects of dosage on the percutaneous absorption of jet fuel hydrocarbons is not clear, yet is essential for human risk assessment. The present study is an ongoing approach to assess the dose-related percutaneous absorption of a number of aliphatic and aromatic hydrocarbons. The first treatment (1X) was comprised of mixtures containing undecane (4.1%), dodecane (4.7%), tridecane (4.4%), tetradecane (3%), pentadecane (1.6%), naphthalene (1.1%), and dimethyl naphthalene (1.3% of jet fuels) in hexadecane solvent using porcine skin flow through diffusion cell. Other treatments (n = 4 cells) were 2X and 5X concentrations. Perfusate samples were analyzed with gas chromatography-flame ionization detector (GC-FID) using head space solid phase micro-extraction fiber technique. We have standardized the assay to have a good linear correlation for all the tested components in media standards. Absorption parameters including diffusivity, permeability, steady state flux, and percent dose absorbed were estimated for all the tested hydrocarbons. This approach provides a baseline to access component interactions among themselves and with the diluent (solvents). A quantitative structure permeability relationship (QSPR) model was derived to predict the permeability of unknown jet fuel hydrocarbons in this solvent system by using their physicochemical parameters. Our findings suggested a dose related increase in absorption for naphthalene and dimethyl naphthalene (DMN).