EMAIL THIS PAGE TO A FRIEND

Radiation research

The effect of hyperthermia on transmembrane potential in Chinese hamster ovary cells in vitro.


PMID 2020742

Abstract

The effect of elevated temperature on transmembrane potential was studied in Chinese hamster ovary cells in vitro using tetraphenylphosphonium cation (TPP+) and 3,3'-dipentyloxacarbocyanine [Di-O-C5(3)], two unrelated lipophilic cation probes that equilibrate across the plasma membrane according to the transmembrane potential. Uptake of TPP+ was measured using a tritium-labeled probe and the uptake of the fluorescent probe Di-O-C5(3) was measured by flow cytometry. The Nernst equation was used to calculate transmembrane potential. The absolute values obtained for transmembrane potential at 37 degrees C using the two probes were different, but qualitatively similar results were obtained using either probe in the hyperthermia studies. Transmembrane potential measured at 43 and 45 degrees C was at least 20% higher than that measured at 37 degrees C, and the difference was statistically significant (P = 0.025 and P less than 0.01, respectively). The hyperpolarization induced by exposure to 45 degrees C persisted temporarily after cells had been returned to 37 degrees C. The hyperpolarization at 37 degrees C associated with a previous exposure to hyperthermia was maximal after cells had been held at 45 degrees C for 2.0 min, and fell to normal levels after 15.0 min at 37 degrees C.