EMAIL THIS PAGE TO A FRIEND

Neuropharmacology

Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions.


PMID 20211192

Abstract

Currently the only therapy for botulinum neurotoxin A (BoNT/A) poisoning is antitoxin. Antidotes that are effective after BoNT/A has entered the motor nerve terminals would dramatically benefit BoNT/A therapy. Inhibition of proteolytic activity of BoNT/A light chain by metalloendoprotease inhibitors (MEIs) is under development. We tested the effects of MEIs on in vitro as well as in vivo BoNT/A poisoned mouse nerve-muscle preparations (NMPs). The K(i) for inhibition of BoNT/A metalloendoprotease was 0.40 and 0.36 muM, respectively, for 2,4-dichlorocinnamic acid hydroxamate (DCH) and its methyl derivative, ABS 130. Acute treatment of nerve-muscle preparations with 10 pM BoNT/A inhibited nerve-evoked muscle twitches, reduced mean quantal content, and induced failures of endplate currents (EPCs). Bath application of 10 muM DCH or 5 muM ABS 130 reduced failures, increased the quantal content of EPCs, and partially restored muscle twitches after a delay of 40-90 min. The restorative effects of DCH and ABS 130, as well as 3,4 diaminopyridine (DAP) on twitch tension were greater at 22 degrees C compared to 37 degrees C. Unlike DAP, neither DCH nor ABS 130 increased Ca(2+) levels in cholinergic Neuro 2a cells. Injection of MEIs into mouse hind limbs before or after BoNT/A injection neither prevented the toe spread reflex inhibition nor improved muscle functions. We suggest that hydroxamate MEIs partially restore neurotransmission of acutely BoNT/A poisoned nerve-muscle preparations in vitro in a temperature dependent manner without increasing the Ca(2+) levels within motor nerve endings.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

D7148
3,4-Diaminopyridine, ≥98%
C5H7N3