Pediatric nephrology (Berlin, Germany)

Chronic treatment with lisinopril decreases proliferative and apoptotic pathways in autosomal recessive polycystic kidney disease.

PMID 20229187


Angiotensin converting enzyme (ACE) inhibition is a common therapeutic modality in the treatment of autosomal recessive polycystic kidney disease (ARPKD). This study was designed to investigate whether chronic inhibition of ACE would have a therapeutic effect in attenuating the progression of renal cystogenesis in an orthologous rat model of ARPKD, the polycystic kidney (PCK) rat. Lisinopril (3 mg/kg per day) was administered orally for a period of 12 weeks, beginning at post-natal week 4. Lisinopril treatment resulted in an approximately 30% improvement in the collecting duct cystic indices (CT CI) of PCK animals. Activation of extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2), proliferative signaling markers, and proliferating cell nuclear antigen (PCNA), an end-point marker for proliferation, was reduced following chronic treatment with lisinopril compared to that in vehicle-treated PCK rats. To assess whether apoptotic pathways were altered due to chronic ACE inhibition, we examined p38 mitogen activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which are markers of apoptotic signaling cascades. p38 MAPK was significantly reduced (P < 0.0001) following chronic treatment with lisinopril, but no change in the activation of SAPK/JNK could be detected by immunoblot analysis. Lisinopril treatment resulted in a significant reduction (P < 0.01) in cleaved caspase-7 levels, but not caspase-3 activity, in PCK rat kidneys compared to the vehicle-treated PCK rat kidneys. Proteinuria was completely ameliorated in the presence of chronic ACE inhibition in the lisinopril-treated rats compared with the vehicle-treated PCK rats. In all, these findings demonstrated that chronic ACE inhibition can beneficially alter proliferative and apoptotic pathways to promote therapeutic reductions in renal cyst development in ARPKD.